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Large-amplitude axisymmetric waves on columnar vortices, thought to be related to 
flow structures observed in vortex breakdown, are found as static bifurcations of the 
Bragg-Hawthorne equation. Solutions of this equation satisfy the steady, axi- 
symmetric, Euler equations. Non-trivial solution branches bifurcate as the swirl 
ratio (the ratio of azimuthal to axial velocity) changes, and are followed into strongly 
nonlinear regimes using a numerical continuation method. Four types of solutions 
are found : multiple columnar solutions, corresponding to Benjamin’s ‘ conjugate 
flows ’, with subcritical-supercritical pairing of wave characteristics ; solitary waves, 
extending previously known weakly nonlinear solutions to amplitudes large enough 
to produce flow reversals similar to the breakdown transition ; periodic wavetrains; 
and solitary waves superimposed on the conjugate flow that emerge from the periodic 
wavetrain as the wavelength or amplitude becomes sufficiently large. Weakly 
nonlinear soliton solutions are found to  be accurate even when the perturbations 
they cause are fairly strong. 

1. Introduction 
This paper is concerned with axially symmetric standing wavetrains and solitary 

waves, without restrictions to infinitesimal or weakly nonlinear amplitudes, in 
inviscid incompressible vortex flows. Although the paper may be regarded strictly as 
a contribution to understanding of waves which may propagate on vortex cores, our 
motivation is the exploration of a conceptual picture of vortex breakdown given by 
Leibovich (1983) (and in a more widely accessible review in 1984, we shall designate 
either of these references as L). 

In  aerodynamic contexts, the global flow field causes impressed forcing on 
concentrated vortices embedded in it. Generally, the spatial scales of the forcing are 
large compared to scales associated with the vortex core. A conceptual model of 
vortex breakdown is promulgated in L, guided in part by laboratory experiments 
and in part by the weakly nonlinear ‘trapped wave ’ theory of Randall & Leibovich 
(1973, referred to hereinafter as RL). In the scenario outlined in L, vortex breakdown 
is a process that involves a critical admixture of a strongly nonlinear axisymmetric 
wave propagating in a vortex ‘ waveguide ’ having axially varying characteristics 
(and hence an axial pressure gradient), and a smaller asymmetric perturbation 
arising from instability of the big wave. The pressure gradient impressed by the 
waveguide does work on the axially symmetric wave, causing i t  to  grow to large 
amplitude. The weakly nonlinear trapped-wave theory of RL indicates that wave 
growth of this sort leads to a positional instabi1it.y of the wave: as it grows, i t  
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propagates faster, and an equilibrium position cannot be established (with respect to 
a reference frame fixed by the waveguide) unless there is a mechanism for extraction 
of energy from the axisymmetric wave. RL invoked viscosity as a mechanism to 
dissipate wave energy. On the other hand, laboratory experiments (such as those 
done by Sarpkaya 1971 and by Faler & Leibovich 1977, 1978) show clear evidence 
of non-axisymmetric features within a nearly axisymmetric ‘bubble ’ form of vortex 
breakdown, and the onset of asymmetry is consistent with an instability of the 
axially symmetric flow. If the ‘bubble’ were regarded as a manifestation of a large- 
amplitude, nearly axisymmetric wave, then instability to asymmetric perturbations 
offer the possibility of much larger energy transfers from the wave than would 
viscous dissipation. Furthermore, the features of vortex breakdown appear to  
depend little on viscosity, a t  least a t  higher values of the Reynolds number. 
Consequently, i t  is suggested in L that the required energy extraction from the 
strongly nonlinear axially symmetric wave arises by the transfer of its energy to 
azimuthally asymmetric modes of motion which arise by instability. (It is pointed 
out in L that a large-amplitude axially symmet,ric mode - large-amplitude implying 
a variation occurring on axial scales comparable with the vortex core radius - is 
required in vortex breakdown, since only this component of a Fourier decomposition 
in the azimuth can lead to the deceleration of fluid on the vortex axis that is the 
hallmark of vortex breakdown.) On the basis of their experimental observations in 
flows very different from those already cited, Maxworthy, Mory &, Hopfinger (1983) 
also suggest, in a paper published in the same 1983 volume as the paper by 
Leibovich, that breakdown is associated with loss of stability of large axially 
symmetric waves to non-axisymmetric perturbations. 

To explore this suggested process, we have divided it into elements which a t  a later 
time must be recombined. The  first element is the large-amplitude axially symmetric 
wave, and the aim of this paper is to develop a better understanding of these waves. 
The other ingredients of the hypothesis, not yet considered, are loss of stability to 
asymmetric perturbations, and effects engendered by axial inhomogeneity caused by 
the global flow field. We emphasize that the phenomenon of vortex breakdown is 
unlikely to be attributed to only one physical mechanism, such as big axisymmetric 
waves : interacting mechanisms are almost certainly involved, and a satisfactory 
understanding of the phenomenon will depend on a proper synthesis of multiple 
interacting causes. In  our view, already indicated, a promising minimal set of effects 
is indicated by experiment to be (i) large-amplitude waves, (ii) energy transfer from 
the big waves to equilibrated three-dimensional instabilities of modest amplitude, 
and (iii) axial variation caused by pressure gradients impressed on the vortex core. 
In  completely confined flows, such as the class studied by Vogel (1968), Ronnenberg 
(1977), Escudier (1984), and Lugt & Abboud (1987), among others, viscous 
dissipation may be large enough (as originally assumed in RL) so that vortex 
breakdown may take place without three-dimensional instability (ingredient (ii)), 
and viscous diffusion may significantly augment pressure gradients (ingredient (iii)) 
which are caused by the deceleration required by the endwall. 

In  axially symmetric steady flow it is well known that the Euler equations for 
inviscid swirling flow may be reduced to a single elliptic differential equation for the 
stream function. This equation seems to have been first discovered by Bragg & 
Hawthorne (1950), and in this paper we shall refer to it by their names. Following 
Leibovich (1985), we parameterize the Bragg-Hawthorne equation (BHE) by the 
relative level of the swirl, and construct standing waves, either infinite wavetrains or 
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solitary waves, by studying the branching behaviours which arise as the parameter 
is varied (other, non-wavy flows, were discussed by Leibovich 1985 from this starting 
point, and a few of the results to be detailed here for weakly nonlinear wavy flows 
were announced in Leibovich 1987). The procedure can therefore be described as a 
search for static bifurcations of the BHE. Another natural parameterization that 
might have been chosen as a starting point for a bifurcation analysis is the wave 
speed of waves of permanent form. Here one adds a constant parameter to the 
primary axial velocity profile, given in a specific frame of reference, and regards the 
swirl as fixed. This choice, although more useful for some purposes than the 
parameterization using swirl level, introduces the wave-speed parameter into the 
problem in an awkwardly nonlinear way, and we have not made use of it in this work. 

Branching, when it occurs, is from a primary columnar vortex, assumed to be 
given. The flows which bifurcate from this vortex are required to have the same 
volume flow rate, and the same total head and circulation variation with stream 
function as does the given vortex. With these constraints and the assumption that 
the flow is either periodic in the axial direction with a finite wavelength L or is 
columnar a t  upstream and downstream infinity, we find that new flow branches may 
be of four kinds. One class (I, discussed in $4) of bifurcating flows is again columnar, 
so there are no axial variations; a second class (11, $6) consists of solitary waves with 
the primary flow a t  upstream infinity ; periodic wavetrains comprise the third class 
(111, $5); and a fourth class (IV, 55) consists of solitary waves that approach a 
columnar flow a t  large axial distances that is distinct from the primary columnar 
flow. 

The columnar branches, of which there is an infinite number, when taken together 
with the primary flow, are the ‘conjugate’ flows defined and discussed in Benjamin’s 
(1962) seminal paper. Two of these are especially important and receive emphasis in 
Benjamin’s work; these are the primary flow, and what we shall call the principal 
conjugate flow, which is the columnar flow branching at the principal, or lowest, 
eigenvalue of the linearized problem, and therefore differing from the primary flow 
by an azimuthal vorticity that does not change sign. The procedure adopted here 
allows one to  determine how these solutions are interrelated. We are also able to show 
that, at a columnar-columnar bifurcation point between the primary flow and its 
principal conjugate, there is a transfer of Benjamin’s ( 1962) criticality classification 
of the flows. That is, if one flow is supercritical on one side of the bifurcation point 
(does not admit upstream-propagating waves of infinitesimal amplitude, and shorter 
standing waves), then the other columnar branch is subcritical (admits upstream- 
propagating waves), and that these properties of the branches are exchanged as the 
bifurcation point is passed. (NB. We use some of the language of bifurcation theory, 
but our use of the terms ‘ supercritical ’ and ‘ subcritical ’ is according to Benjamin’s 
wave classification, and is not related to  the direction of bifurcation.) 

Fully nonlinear solutions have been determined numerically. This of course 
requires that specific examples of primary vortices be considered. We have chosen 
one family of examples, uniform axial velocity and the Burgers vortex. While the 
uniform axial velocity of this primary vortex differs from the jet-like character of 
flows in which vortex breakdowns have been observed, the principal columnar flows 
which bifurcate from our example are either jet-like or wake-like depending on swirl 
level, and therefore closely resemble flows upstream or downstream, respectively, of 
vortex breakdown. (These flows correspond to different problems, having different 
angular and axial momenta and therefore cannot be imagined to be end states 
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somehow linked together in a single flow in a constant-area tube.) In  addition to the 
general results on columnar branches already mentioned, we note here an interesting 
- though academic - feature of the principal columnar branch. We have found that 
this branch can be numerically continued to very small swirl levels. With this clue 
as a point of departure, we find the flow (in Appendix B) in the limit of vanishing 
swirl by asymptotic means, showing that continuation to zero swirl is possible. 

Numerical examples of fully nonlinear wavy solutions similar to some of those 
discussed in this paper have been presented by Hafez et ul. (1987) (an abbreviated 
account is given by Hafez & Salas 1985). Our paper gives a considerably more 
comprehensive picture of the inviscid picture by identifying classes of solutions other 
than periodic wavetrains, and by uncovering the connections between them. The 
results of Hafez et al. were computed for a different (although more or less similar) 
class of primary vortices, yet their results are qualitatively similar to ours. This, and 
the theoretical argument of this paper, leads us to believe that the response to 
variation of swirl, and the main characteristics of the flows to be described here, are 
not the consequence of a special choice of profiles for the numerical work, but are of 
general applicability. 

Solitary waves of class I1 can be found for the supercritical values of parameters by 
numerically continuing known weakly nonlinear solitary waves (with our choice of 
primary vortex, we have access to  weakly nonlinear results found by Leibovich 1970 
which we use as a starting point) to large amplitude. These solitary-wave flow fields 
approach the primary columnar flow asymptotically a t  large upstream and 
downstream distances. Their amplitudes can be increased to values sufficiently large 
to cause stagnation points to appear, followed by encapsulated regions of closed 
streamlines. The utility of the results when flow reversals are present requires careful 
consideration, particularly since added non-uniqueness enters in such circumstances, 
and the consistency requirement of the Prandtl-Batchelor criterion is violated. We 
believe that the results will prove to be of value a t  these large amplitudes, and discuss 
the reasons for this belief in $5.2 .  An interesting and potentially useful point is that 
even at  amplitudes large enough to cause stagnation and reversed flow, the weakly 
nonlinear solitary-wave solutions remain a good approximation to the results of the 
fully nonlinear calculations. 

For subcritical parameter values, periodic wavetrains (class 111) have been found 
by numerical continuation beginning with infinitesimal waves. As the amplitudes of 
the periodic wavetrains increase at fixed wavelength in the numerical examples (as 
they do when the parameter measuring swirl increases), the wave troughs become 
highly localized, and the wave crests become very broad. These broad crests have 
virtually no axial variation, that is, they are nearly columnar. We show that these 
nearly columnar flows closely approximate, a t  large wave amplitude, the columnar 
principal conjugate vortex. The same kind of behaviour is found to hold when the 
swirl level is held fixed, but the wavelength of a wavetrain is increased. In either case, 
an individual wave trough approaches a solitary wave with the principal conjugate 
columnar vortex being the flow at  ‘large ’ distances upstream and downstream. Thus, 
we are led to another family of solitary waves (class IV)  distinct from those 
supported by the primary vortex, but clearly related to it through branching. 
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2. Problem formulation 
The Euler equations in cylindrical coordinates ( r ,  8, z )  for steady, incompressible, 

axially symmetric flow may be reduced to a single elliptic partial differential 
equation for the Stokes stream function, $, related to the radial (u) and axial ( w )  
velocity components by 

u = - r - l$ z ,  w = r-Ikr. 

The equation, which connects the azimuthal vorticity to the total head and 
circulation, seems to have been first found by Bragg & Hawthorne (1950) and is given 

Dz$ = r 2 H ( $ )  - F F ( $ ) ,  

where Dz$ = $,.,. - rP1$,. + $zz = ry 

and y is the azimuthal component of vorticity. A number of other authors have made 
use of this equation, notably Long (1953), F'raenkel (1956), Squire (1956), and 
Benjamin (1962). More recent examples of the use of this equation, with specific 
application to the problem of vortex breakdown, have been given by Keller, Egli & 
Exley (1985) and by Fiedler & Rotunno (1986). See Batchelor (1967) for a convenient 
reference for a derivation of BHE, following Bragg & Hawthorne, or Yih (1965) for 
a derivation by an alternative method. The replacement of the Euler equations by 
BHE is justifiable at all points in a steady, inviscid and axially symmetric flow with 
the possible exception of meridional stagnation points (i.e. where u = w = 0, but v, 
the azimuthal velocity component, may be non-zero), which are singular points of 
the transformation. In  BHE, H ( $ ) ,  the total head or Bernoulli function 

by 

1 
H ( $ )  = -P+$v.v, 

P 

and F ( $ ) ,  the circulation about the symmetry axis (apart from a factor of 2n), 

F($)  = rv(r ,  2) ( 2 )  

are functions of $ alone. That F is a function of $ alone is a consequence of 
conservation of angular momentum in an inviscid fluid. 

Solutions to BHE are solutions to the Euler equations under the stated restrictions, 
and different inviscid flow problems arise from the specifications of the pair of 
functions H and F .  The simplest cases are those for which the radial component of 
velocity vanishes at  some plane x = z1 on which the axial (w) and azimuthal (v) 
velocity components are specified to be W(r) ,  V ( r )  with W + 0 ;  then H ( $ )  and F are 
easily determined (see Benjamin 1962). I n  this case, which we consider here, 

a t  this plane. Since 

we can suppose this latter relation to be inverted to  give 

$(r ,  x l )  = l r W ( r )  dr  = P(r)  

r = R($). 

(4) 
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This inversion can always be done (in principle) if W(r)  + 0. At z = zl, we can now 
regard W as a function of $, since 

With V(r )  prescribed, F($)  is determined to be 

The pressure may now be found as a function of $ from (3) by integration, 

and thus H ( $ )  may be identified. If the radial velocity is not given to be zero at 
z = zl, but is prescribed as some non-trivial function of r ,  a similar construction of 
H ( $ ) ,  F($)  can be carried out. We call the flow given at  the plane z = x l  the 
‘specifying flow ’; this will be taken to be the basic, or primary, flow and the starting 
point of our investigations. 

Only H’($) is required for the analysis, H ( $ )  itself is not needed. At a plane z = 
z1 where u = 0, v = V ,  w = W ,  

Now we suppose that, a t  z = zl, the functional form of the swirl V(r)  is fixed, but 
the level is adjustable, so that 

F($)  = A!(*), (10) 

where f is a fixed function, and A is an adjustable constant. BHE for $ may be 
written 

D2$ = r2A($)-A2B($,r2) (11) 

(12) 
1 dW 

R($) dr 
where A($)  = ---(N$)), B($, r 2 )  = (~2($/)-r2)fs’($r)/R2($). 

With the appropriate interpretation of A, we may regard (11) as dimensionless. 
Thus, if we scale distances by a characteristic radius b (such as that of a bounding 
tube, or, alternatively, the location of the maximum swirl speed), the specifying axial 
velocity by a characteristic speed W, (such as its value on the axis), the stream 
function by b2Wo, the azimuthal speed by a typical value V, (such as the maximum 
occurring in the flow), then 

A = - .  v, 
w, 

and we may interpret (1 1) as a dimensionless equation. 
The parameter h appears only as hZ, and so we replace it hereafter with 

A = A’, (13) 

and as a consequence of its definition, only admit positive values of A .  
Suppose the boundaries of the fluid in the ( r ,  %)-plane have, as two constituents, the 
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impermeable cylinders r = ri and r = 1 > ri (here we have chosen the outer tube 
radius as lengthscale for our problem). The columnar specifying flow 

$(r,z)  = V T )  (14) 

is a solution of (11)  holding for all A > 0. We now wish to find other solutions, 
periodic in z with a prescribed wavelength L. Since both the specifying columnar flow 
and any other wave-like solutions that may exist simultaneously satisfy the same 
mathematical problem, and one possibility for this to occur is by bifurcation of new 
branches of solutions from the specifying flow, the multiple solutions so obtained, 
when of small amplitude, may be identified as the waves propagating on the 
specifying flow previously found in the literature (cf. Long 1953; Fraenkel 1956; 
Squire 1956; Benjamin 1962). Let 

@ = $- Y(?.)7 (15) 

represent the perturbation stream function. If there are other solutions, there is a 2- 

periodic non-trivial solution to the (elliptic) partial differential equation 

where 

N(@, A )  = D2@++(@, T ,  A )  = 0, 

Q(@, T , A )  = AP(@,  r ) - P Q ( @ )  

with P ( @ , T )  = B ( Y + @ , r 2 ) - B ( Y , r 2 ) ,  Q ( @ )  5 A ( Y + @ ) - A ( Y ) ,  

satisfying the boundary conditions 

@(Ti, z )  = @( 1,  z )  = 0, 

@ ( r ,  z-$5) = @ ( T ,  z+&). 

(164 

(16d) 

The nonlinear problem admits solutions even in z ,  and we focus on these. In  
addition to admitting solutions with this symmetry ( z + - z ) ,  solutions are also 
admitted with z+z+h ,  for any h. Thus, smooth z-periodic solutions may be 
constructed by appropriately piecing together (by reflections and shifts) solutions 
satisfying the Neumann boundary conditions, 

a@ a@ 
az ax -(r,O) = -(r,L&) = 0. 

3. Static bifurcation analysis 
The Bragg-Hawthorne equation describes only steady, or ‘static ’, solutions. It 

can therefore be used to describe branches of the families of steady solutions 
corresponding to  the same functional forms (as functions of the stream function) for 
the total head and circulation, and the same volume rate of flow. The bifurcation and 
continuation of such branches is discussed in this section. The question of the 
stability of the various solution branches of the BHE is a dynamical problem. This 
cannot be answered in the context of the BHE equation, and it is necessary to return 
to the Euler equations in which solutions to BHE are embedded. This is addressed 
(for columnar solutions only) in $4. 

3.1. Perturbation expansion 
We know that the specifying flow, @ = 0, is a solution to the problem (16) for any 
value of the parameter A .  This can fail to be a unique solution branch for a given A 
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only when L(0, A ) ,  the operator defined by the linearization of N(@, A )  about @ = 
0, is not invertible. This occurs only when the parameter A coincides with an 
eigenvalue p (say) for the linearized problem 

$,, = 0, 

$o(yi> 2) = $O(l,z) = 0, $o(rj, 2 - 5 )  = $o(ri, z+$). (17b) 

For A near an eigenvalue p, we construct a solution branching from the specifying 
flow in a perturbation series. This will provide a local approximation for the solution 
branching a t  p, which we shall continue numerically to larger values of ) A  -PI .  Let 

o = € ( $ O + E $ l + . . . ) ,  (18a) 

A ( € )  = p + € K ( E )  = , U + € ( K O + B K 1 +  ...), (18b) 

and set 

where ,u refers to any eigenvalue of the linearized problem (17)  and $o the 
corresponding eigenfunction, 6 is a small ordering parameter measuring the 
amplitude of the bifurcating solutions and the difference between A and its value p 
at the bifurcation point, and the dots stand for higher-order terms in B .  When these 
relationships are substituted into (16a), Taylor series expansions in powers of E 

carried out and each coefficient in the series set to zero, the first three coefficients are 

1 df2 
pl(r) = ___- 

The numerator of p l ( r ) ,  when multiplied by A ,  is Rayleigh's discriminant, and 
therefore sensible problems, in the context of considerations such as in this paper, 
will have p l ( r )  > 0, and we assume this to  be the case. (Otherwise, the primary flow 
is unstable.) Only positive values of p can correspond to branch points, since A > 0 
by definition. If p l ( r )  > 0 and ql (r )  2 0, then the smallest (or 'principal') eigenvalue 
is guaranteed positive (Leibovich 1985), and is therefore a possible branch point. 
Positive values of q l ( r )  are not necessary for this to be so. In  the development below, 
we explicitly assume that the smallest eigenvalue is positive. If this is not so, then 
the mathematical changes needed are obvious - one deals only with the positive 
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eigenvalues, of which there is an infinite number - but a number of the results and 
interpretations given here may require modification. 

The problems we have posed here depend on two parameters, A and I ; ,  once the 
specifying flow is selected. 

The principal eigenfunction has no zeros in the interior of D (Courant & Hilbert 
1953) and, without loss of generality, we therefore may take i t  to be non-negative. 
Even eigenfunctions are all of the form 

4, = xpm(r )  cos (2mnz/L), (21) 

where the integer index p is the number of internal zeros of X p m ( r ) ,  which satisfies the 
problem 

Here we have labelled the eigenvalues according to the indices p and m 
corresponding to the associated eigenfunction. The principal eigenfunction cor- 
responds to m = 0 and to the index p ,  which we can take to be p = 0, such that the 
function Xoo(r) has no zeros internal to D. The principal eigenfunction belongs to the 
eigenvalue ,uoo and is a function of r alone. A solution that branches from the 
principal eigenvalue therefore corresponds to a new columnar flow (which we shall 
call the ‘principal conjugate branch’ since it is a conjugate flow defined by 
Benjamin 1962), and an infinite number of other columnar flows (also conjugates in 
the sense of Benjamin) branch from larger eigenvalues corresponding to m = 0 and 
the eigenfunctions x p o ( r ) ,  for p = 1 ,2 ,3 ,  ... . Solutions periodic in z (standing waves) 
branch from eigenvalues corresponding to eigenfunctions with m + 0. Modes for all 
values of m are characterized by the number of zeros of their eigenfunctions witjh 
x p m ( y )  having p internal zeros. 

The eigenvalue problem (17) is in standard Sturm-Liouville form (Courant & 
Hilbert 1953), and some of its features (such as bounds on the smallest eigenvalue) 
are discussed by Leibovich (1985). There is one comment which is worth making a t  
this point about this eigensystem, in addition to the observations we have already 
made. Eigenvalues corresponding to z-dependent eigenfunctions (constituting 
‘wavy ’ modes, with eigenvalues exceeding ,uoo), decrease as L increases (Courant & 
Hilbert 1953), and as L + 00, poo is an accumulation point for the wavy eigenvalues 
porn, m + 0. For the same reason, waves corresponding to higher radial modes have 
accumulation points, with ,upm +ppo as L + cc. 

3.2. Branching behaviour 
If 4, is an eigensolution, then the solution to the adjoint eigenvalue problem with an 
unweighted inner product is $ , / r ,  or alternatively, the problem is self-adjoint under 
the inner product 

where 

and D is the spatial domain in which our problem is set. 
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For problem (20b)  to have a solution $1, the solvability condition 

must be satisfied. If p = poo is the smallest eigenvalue, then $o is the primary 
eigenfunction, which may be taken to be positive. Unless poop,(r) - r2qz(r)  is 
distributed in a special way, then K~ is non-zero and the bifurcation a t  poo occurs with 
finite slope (i.e. it is transcritical or dA/dE =k 0 a t  8 = 0). 

The eigenfunction corresponding to pol, the lowest eigenvalue for m = 1, is 

$0 = Xol(r) cos (2XZlL). (24 )  

According to (23 ) ,  K~ = 0 for solutions branching from porn (m > 0), since the 
defining integrals extend over m periods in z and the numerator therefore vanishes. 
For m = 1 ,  the differential equation determining $1, from ( 2 0 b ) ,  is now 

4 0 ,  $1 = - l U O l  P A Y )  - r2q2(r)l $i 
= -t[luolp2(r) -r2q2(r)1 P + cos ( 4 ~ 4 1  (25)  

(26 )  

The direction of the bifurcation is fixed now by K ~ .  Assuming K~ =k 0, A ( € )  -pol  = 
K~ e2 + ..., and the bifurcation there is a pitchfork (dA/ds = 0 and d2A/ds2 =k 0 
at e = 0). The value of K, is determined by the solvability of ( ~ O C ) ,  and the formula 
corresponding to  (23) is 

with solutions in the form 

$1 = f iW +fib-) cos ( 4 W - 5 ) .  

and this does not generally vanish. 
The solutions bifurcating a t  pol are wavetrains with wavelength L in an axially 

infinite region. By developing the series solution in E, a finite-amplitude periodic 
wavetrain may be constructed. 

When L + GO, pol = poo + O ( L - 2 ) ,  and the solution of the inhomogeneous ordinary 
differential equation forfl(r) is of O(L2) .  As a consequence, the series (18a) becomes 
disordered when sL2 = O(1). The way to deal with this non-uniform behaviour for 
long-waves by the method of multiple scales (or equivalent methods) is well-known. 
In the context of the approach taken here, the expansion is centred about the 
columnar bifurcation point, poo. The procedure, sketched in Leibovich (1987),  goes as 
follows. Letting Z be the slow scale, with 2 = zsi, @ = A(Z)$,(r) (at lowest order), 
then $o(r)  is the principal eigenfunction corresponding to the eigenvalue poo, and A 
satisfies the equation 

d2A 
-+aA2+/3~,A = 0, 
dZ2 

where K,, is defined by (18b) ,  as before, but is no longer restricted by the solvability 
condition (23 ) ,  and 

The analysis, although by a different route, is essentially that of Benjamin (1967).  
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Equation (28a)  has the solitary-wave solution 

A = asech2 [(&a)iZ] = asech2[(&ea)iz], (29a) 

provided aa > 0 (and has no such solution otherwise). The constant a in (29a) is 
related to the parameters in (28a) ; with the level of the extreme value of A set to be 
a and placed a t  z = 0, as has been done in (29a), the amplitude a, or more precisely, 
€a, is linearly related to the swirl rate by 

2a 
A = poo--tza. 

3P 

In this discussion, it has been assumed that e is positive, so that waves of elevation 
or depression depend on whether a is positive or negative : since we must have aa > 
0, the question devolves to the sign of a, which is a functional of the specifying flow. 
Furthermore, since /3 > 0, (29b) shows that solitary waves may exist only for A < 
pa,. In this parameter regime, no infinitesimal standing waves are possible (since they 
all branch from eigenvalues greater than pa,), and by definition this is a supercritical 
regime. Thus (29b) makes clear that weakly nonlinear solitary waves form only on 
supercritical flows. Further discussion of the criticality classification is given in $4.1. 

The weakly nonlinear solitary-wave solutions found by Leibovich (1970) from the 
time-dependent KortewegqeVries equation are equivalent to those given above. 
This alternative form effectively derives from the alternative parameterization of the 
time-independent problem by wave speed (instead of swirl level) mentioned in the 
Introduction and is 

[i rgr ( z  - c, t + gacl t )  1 , Q, = ea$,(r) sech2 

where a is an arbitrary amplitude, q5, is the eigenfunction of the linearized problem 
equivalent to (27), the ci are constants depending on the base flow and $, and are 
equivalent to a and /3 in (28). For a given base flow, the value of ea determines the 
wave amplitude and therefore its velocity; or, alternatively, the change in the base 
flow axial component that would make the solution stationary. Changing A (that is, 
the azimuthal component) instead will produce the same results provided the swirl 
ratio is the same; so selecting an eigenvalue and setting A (or A )  completely 
determines this approximate solution. 

The numerical construction of solutions along a branch can be done by a simple 
continuation method, starting with solutions generated numerically by the 
perturbation procedure described above. 

3.3. Branch continuution 
To ‘continue’ (Kubicek &, Marek 1983 gives a good summary of continuation and 
bifurcation methods) a solution (Go, A,)  known a t  a given value of A = A,, to a 
neighbouring value differing from A,  incrementally, we could proceed by taking @, 
as an initial guess for @(A,  + A A )  in a suitable iterative procedure, such as Newton’s 
method, 

@n+1 = Q,n - L-7Qn, A )  N ( @ n ,  A )  (31) 

using an appropriate discretization for L and N. This will give a solution if L is not 
singular, that is, if no bifurcation or turning point is encountered, and if AA is 
sufficiently small. To increase the size of AA while still providing a good guess for the 
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iteration, we can proceed in the following standard way by differentiating along 
solution arcs ( @ ( A ) ,  A )  : since 

N(@(A) ,A)  = 0, 

Then, a t  any point ( @ , A ) ,  the 'slope' of the solution curve 

assuming the linearized operator L(@, A )  is invertible with inverse L-'(@, A ) .  We can 
think of (31) as a differential equation for @ as st function of A .  We use (31) and (32b), 
in a numerical algorithm described in Appendix A, in a predictor-corrector mode. 
We first integrate (32), using a Runge-Kutta method to arrive at an estimate for @ 
a t  A,  + AA assuming a solution is known a t  A,,, and then refine this estimate using 
Newton iteration (31). We begin each solution branch by using a three-term 
perturbation expression, also described in the  Appendix, which is the discrete version 
of the analysis given in $3.2. This procedure will fail if secondary bifurcation points 
or turning points are encountered as a given branch is traced, and then a more 
involved procedure, such as that devised by Keller (1977) (see also Kubicek & Marek 
1983) will be required. We did not encounter such complications in the course of our 
investigations. 

To do detailed calculations, we must select a particular specifying flow. We take 
r i  = 0, and explore the possible branches of solutions stemming from the following 
simple columnar vortex which has been previously treated by Leibovich (1970) : 

(33) W(r)  = 1, V(r )  = A{ 1 - exp ( - ar2)} / r .  

This example is known as the Burgers-Rott vortex. It corresponds to the following 
specifications of the functions arising in § 2 : 

Y(r)  = 22, R($)= z@, f($) = 1-exp (-~a$), 'I 
A ( $ )  = 0;  B($,r2)  = ($-+rz)2aexp(-2aq+) 

P(@, r )  = B(+r2 + @, r 2 )  -B(+r2, r 2 )  ; Q(@) = 0. 

3.4. Numerical implementation 
The problem stated in (16) is discretized using central differences on a rectangular 
mesh in the meridional plane ( r ,  2 ) .  Let di, D, 52 be the finite-dimensional counterparts 
of @, D2, SZ, as defined in Appendix A; (16) then corresponds to the matrix equation 

D @ + + ( d i , A )  = 0. (35) 

Equation (35) is the basis for the numerical treatment. We do not discretize steps 
of the analytical procedure separately ; rather, we provide an equivalent analysis for 
the approximate equation (35). A separate discretization of (22), for example, leads 
to eigenvalues that are slightly different than the bifurcation points of (35), and this 
is enough to  prevent convergence to a solution branch in some cases. Even more 
telling, if eigenvectors obtained from the algebraic eigenvalue problem are used in 
conjunction with a semianalytic enforcement of an orthogonality condition (for 
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example, by means of a numerical quadrature), then the result will not be precisely 
orthogonal in the algebraic problem, and if the next stage of the problem is solved 
algebraically, errors are introduced. We therefore rederive equations (1 7)-(29) in the 
Appendix A for the algebraic system (35). This ensures consistency of numerical 
values throughout the analysis. 

The strategy is the same as that described in $93.2 and 3.3. First, a solution point 
on a non-trivial branch is sought using a perturbation expansion (or, for the solitary- 
wave branch, the weakly nonlinear solution may be used). Numerical integration of 
the discrete analogue of (32b) continues the branch away from the bifurcation point, 
and Newton’s iterations serve as corrector steps at selected points along the branch. 

4. Columnar-columnar bifurcations and continuation 
I n  this section, we discuss some general questions about bifurcations of the 

specifying columnar flow to other columnar flows, give numerical results for the 
example specified in (34), and briefly discuss some aspects of the stability of the 
computed flows. 

4.1. Transfer of criticality condition 
Benjamin (1962) has provided a simple test to determine whether a given columnar 
vortex is subcritical or supercritical. As Leibovich (1979) has shown, this turns out 
to be an appropriate test (for axisymmetric disturbances) even though the crucial 
quantity determining whether upstream propagation of disturbances is possible is 
the group, not the phase, speed. Subcritical flows can be expected to be influenced 
by small downstream disturbances. This might be true even in flows that are 
supercritical according to this classification scheme, since it does not cover non- 
axially symmetric perturbations, but the propagation characteristics of non-axially 
symmetric waves (see Leibovich, Brown & Pate1 1986) are more difficult to 
determine. Benjamin’s criticality classification is important because it seems to be 
useful in correlating vortex breakdown data (see L), as Squire (1960) and Benjamin 
(1962) had proposed. In  particular, the evidence (see Leibovich 1978 or L) indicates 
that flows upstream of vortex breakdowns are supercritical, while the (mean) flows 
downstream are subcritical. 

To determine the criticality condition of a given columnar flow, we ask whether it 
can sustain infinitesimal waves of the form 

$ = X(r)  eikz, (36) 
which means that equation (16a) has a solution in the form 

@+€$ 

for infinitesimal E .  This leads to a problem similar to that in $3.1, except that  we wish 
to consider columnar flows other than the specifying flow (which has @ = 0) ,  and, 
rather than fixing the wavelength ( =  L )  and searching for values of A for which the 
linearized problem is solvable, the question is turned around : A is fixed, and we ask 
if there is any real value of lc (=  2n/L) for which the linearized problem is solvable. 
If so, a standing wave with wavenumber lc determined is possible and the flow is 
subcritical. If not, the flow is supercritical. Let 



472 

then we may write the differential equation for the small wavy perturbations as 
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We now regard this as an eigenvalue problem for k2, with A fixed. It is, owing to 
(36), an ordinary differential equation for x in standard Sturm-Liouville form and 
subject to the boundary conditions X(rJ = ~ ( 1 )  = 0. 

We know that the specifying flow is supercritical for A < poo (because there are no 
eigenvalues of (17)  in this range of A ,  either corresponding to columnar flows or to 
wavy flows, according to $3.1), and subcritical for A > pa0, because, according to the 
observation of $3.1,  there is a wave with some wavenumber for each value of A > pa,,, 
with waves with arbitrarily long wavelengths branching off as A + poo from above. 
If A = pa,,, it is clear that the eigenvalue k2 of (38) vanishes, and we may summarize 
by observing that the eigenvalue k2 of (38) is negative if A < poo, zero for A = p,,,,, and 
positive for A > pa,,, and that 

dk2 
- > 0 at A =pa,,. 
dA 

We wish to characterize the criticality condition of the columnar vortex branching 
off from the specifying flow at  A = poo, on either side of the bifurcation point. To 
explore this, we differentiate (38) with respect to A ,  to arrive a t  an inhomogeneous 
equation for aX/dA:  

Since x satisfies (38) ,  (39) is solvable only if 

We are interested in (40) a t  A = pa,,, @ = 0. The numerator of (40) is 

<x2{2s2(r, p)  d + P A m  (41) 

which we have used the notation of (21) and (23b). The only difference in (40), when 
evaluated at the bifurcation point for either of the intersecting solution curves is the 
direction, 6, of the particular solution curve along which dk2/dA is evaluated. On the 
specifying flow, a@/aA = 0, and on the second branch 6 = x, the eigenfunction, 
apart from an arbitrary multiplicative constant which we take to be unity. Thus, 
along the specifying flow, (40) reduces to 
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To calculate the numerator of (40) for the non-trivial bifurcating solution, we 
differentiate (32a)  twice with respect to A .  The result, when evaluated at  @ = 0, 
A = p l ,  is 

@(O, yo,) &+ 2p0, SZ(T, Po,) d2 + 2p,(r) 6 = 0, 

( ~ 2 { 2 S z ( ~ , P o 0 )  6+ 2p , (4>)  = 0. 

and solvability for 6 requires 

(43) 

Combining (43) with (41), we find that on the bifurcating branch 

dlc” (PlW 6)”) =-  (PAT) x2) 
dA =-  (@? (XZ) ’ 

(44) 

which is just the negative of (42). Therefore, since k2 increases through zero as A 
increases through yo, on the specifying flow branch, it must decrease through zero as 
A increases through poo on the principal branching solution. 

Thus, we have shown that the criticality conditions holding on the specifying flow 
and that holding on the flow branching transcritically from it are transferred at the 
bifurcation point: this will be illustrated in $4.2. If we hold A fixed, our problem 
conforms to that considered by Benjamin (1962)) who labels each columnar flow 
distinct from the specifying flow - and there may be more than one depending on the 
value of A-as  ‘conjugate’ to the specifying flow. Benjamin shows that, if the 
primary flow is supercritical, then all conjugate flows must be subcritical. This 
conclusion has been confirmed by Fraenkel (1967), and is consistent with the local 
results of this section. 

Recently, it has been claimed by Keller et al. (1985) that the analyses referred to 
above are incomplete, and that supercritical flows need not have subcritical 
conjugates. We think that different conclusions are reached because different 
problems are being addressed, and different meanings are being assigned to the words 
‘conjugate’ flows. By this term we mean multiple solutions of the BHE having a 
fixed specification of the functional forms of the circulation r($) and the total head 
derivative H’($). Thus, we are talking about multiple solutions of only one nonlinear 
elliptic partial differential equation. Furthermore, we are dealing with a single fluid 
occupying the same flow domain both upstream and downstream and satisfying the 
BHE everywhere. If r and H have continuous first and second derivatives, the 
results stated above are consequences of satisfying the BHE. We see two ways to 
understand how Keller et al. (1985) can arrive a t  a conflicting conclusion. In  both, 
their allowance of a finite region of stagnant fluid is essential. A review of the 
derivation of the BHE, which involves integration along streamlines, shows that the 
BHE need not hold a t  stagnation points (as already mentioned in $2), nor in a 
stagnant region. With this interpretation, Keller et al. (1985) do not impose the BHE 
for the entire body of fluid. There then is no conflict in the two results, which 
correspond to two distinctly different problems. In the second interpretation, the 
downstream conjugate state in Keller et al. (1985) is required to satisfy a BHE 
equation, but in the interior of the stagnant region it is necessary to choose H’(0) = 
0 to ensure the flow is stagnant within the free streamline. In the downstream flow 
exterior to the stagnation zone, H($) =!= 0 in the limit $ --f 0. Consequently, the first 
derivative of H ( $ )  is discontinuous in the downstream flow field, but is continuous 
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upstream. In this case, the upstream flow satisfies one BHE, and the downstream 
satisfies another, subtly different, BHE, and again the conflict is resolved. 

The aim of this paper is to clarify the nature of the multiple solutions of the BHE, 
and the relationships between these solutions, with particular emphasis on standing 
wave solutions. In  this regard, the principal conjugate, although not a ‘wave-like’ 
solution itself, will be shown in the next section to play a special role for solitary 
waves (our class IV flows). Although we do not propose additional interpretations of 
these flows beyond their connection with solitary waves, it may be of interest to 
mention here the original work developing the concept of conjugate columnar states, 
which had a more ambitious aim. Benjamin’s (1962) theory of vortex breakdown 
suggested the pairing of a supercritical flow and its principal subcritical conjugate in 
analogy with shock jump conditions in gasdynamics, or hydraulic jumps in shallow- 
water theory. As Benjamin pointed out, a direct join of two solutions is not possible, 
since the mcmbcrs of the conjugate pair have different ‘flow force’ or axial 
momentum fluxes. If the differences in the flow forces of the conjugate columnar 
flows are small, Benjamin argued that the superposition of waves on the subcritical 
state can permit conservation of axial momentum. If the differences are too large, 
then energy loss is required to allow a momentum balance and the underlying 
assumptions are nullified. It is then difficult to imagine a physical interpretation 
yielding the principal conjugate as an end state. The same question might be raised 
in the weaker transition, where wave formation suffices to achieve a momentum 
balance, unless the transition region itself remains both steady and axisymmetric. It 
is worth noting, by way of concluding this discussion, that the BHE requires the 
specification only of H’($), not a($). Thus columnar conjugate states of the BHE 
can be joined, conserving mass, angular momentum, and axial momentum, by the 
loss of equal amount of total head on each streamline. This special form of energy loss 
leaves the BHE is unaltered. There is, however, no apparent reason why such a 
spccial arrangement of the energy loss should be realized. 

4.2. Numerical results 
Figure 1 is a bifurcation diagram for the columnar solutions branching from the 
primary flow (33), (34) with a = 14, showing the principal and the second bifurcating 
branches. (The locations of the points of bifurcation are given in table 1 in 95.) The 
branches are described by a measure of the perturbation axial velocity. We took this 
to be the extreme value (regardless of sign), and on the principal bifurcating branch, 
on which the perturbation axial velocity is monotonic in r ,  this always occurred a t  
the axis of rotation. On the second branch, the perturbation axial velocity is not 
monotonic. On this branch, a discontinuity appeared in the bifurcation diagram 
based upon the measure described : for a range of swirl parameter, the extreme value 
occurred on the axis, but shifted to a point off the axis, where the perturbation axial 
velocity was of opposite sign. This is illustrated by two sets of points in the figure, 
one as described, and the other (smooth) set arrived at by plotting only the 
perturbation axial velocity on the axis. 

The supercritical portion of the principal columnar branch plays an important 
role, as will be seen in $5 .  By contrast, the physical significance of the second and 
higher columnar branches is unclear - for the larger amplitude perturbations on 
these branches, axial flow reversals are necessarily accompanied by internal zeros of 
the swirl, and hence instability according to the Rayleigh-Synge (1933) criterion 
(abbreviated subsequently to RS). This may be seen in figure 2,  which shows profiles 
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FIQURE 1. Bifurcation diagram for the first two columnar branches. The extreme perturbation 
axial velocity occurs away from the axis on part of the second branch. 

from three points on the second branch of figure I. Here the bifurcation point occurs 
a t  A = plot and the profiles are drawn for increasing values of A/,ulo. One can also see 
from the profiles for axial velocity how the discontinuity in the bifurcation diagram 
discussed in the previous paragraph arises. We shall not further discuss columnar 
branches other than the principal branch. 

For A < poo, the principal branch shows a developing wake-like axial velocity 
profile as the swirl parameter A is decreased from the branch point pool as may be 
seen in figure 3. The swirl velocity is distorted as well, with the peak swirl moving 
outwards relative to that in the primary vortex. Both of these characteristics are 
qualitatively like the time-averaged profiles measured by Garg & Leibovich (1979) 
(further analysis of this data is given by L and by hibovich 1978) downstream of 
vortex breakdowns, which are, like the solutions here, wake-like and subcritical. 
If A/poo is decreased below a value of about 0.5, the swirl velocity develops an 
internal zero, and the branch will become unstable according to the RS criterion. We 
have nevertheless continued to follow the branch, being curious to know if it could 
be continued to zero swirl, or whether it would turn around. We found that it can be 
continued to zero swirl, and the curvature of the magnified part of the bifurcation 
diagram of figure 1 indicates that the axial speeds get large as A/,uo0 + O .  The axial 
profiles shown for A/poo = 0.001 suggest that the limit flow becomes discontinuous, 
with a vortex sheet forming in the interior. The resolution of the singular limit 

16 FLM 216 
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FIGURE 2. Velocities on the second columnar branch, for different values of the swirl 
parameter A .  (a) Axial velocity, ( b )  azimuthal velocity. 

behaviour as Alpoo +. 0 requires special treatment, and Appendix B is devoted to this 
question. 

On the A/poo > 1 side of the principal branch, the axial velocity profiles are jet- 
like, and the peak swirl moves towards the axis relative to that in the primary 
vortex. Examples are shown in figure 4. No tendency towards RS instability occurs 
on this side of the bifurcation point. These velocity profiles not only resemble the 
profiles measured by Faler & Leibovich (1977, 1978) and in the references cited in the 
previous paragraph for flows well upstream of vortex breakdown, they also can be 
accurately fitted, as can the wake-like solutions previously discussed, by the same 
exponential functions used in those references. We note further that the experimental 
data show the upstream flow to be not only jet-like, but supercritical. Thus, the 
primary vortex with uniform axial velocity generates, through its principal branch, 
vortices of the same character as those found on both upstream and downstream 
sides of experimentally observed vortex breakdowns, so far as the shapes of the 
profiles and their criticality conditions are concerned. It has already been noted in 
the Introduction, however, that one should recall that the jet-like flows here 
correspond to flows with different angular and axial momenta. They therefore cannot 
be identified with end states of a vortex breakdown flow in a constant-area tube 
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FIGURE 3. Velocities on the subcritical side of the principal columnar branch (supercritical 
conditions in the primary flow, A < poo). (a) Axial velocity, (b) azimuthal velocity. 

without invoking forces and torques outside the theory, a step which is not suggested 
here. 

For A < poo, the primary vortex is supercritical and the principal branch is 
subcritical, and according to the general theory of $4.1, these characteristics should 
be exchanged when A > poo. We have tested this by computing the generalized 
Froude number, N ,  proposed by Benjamin (1962). This is defined to be 

C+ + C- N E - ,  
c+ - c- 

where c, and c- are, respectively, the maximum and minimum phase speeds of 
infinitesimal axisymmetric waves of extreme length propagating on the vortex. If 
N > 1,  a vortex is supercritical, and if N < 1 it is subcritical. We have computed N on 
both the primary vortex and the principal branch, and the results, given in figure 5, 
confirm the general theory on exchange of criticality a t  the bifurcation point. 

4.3, Xtability aspects 
Stability of the steady solutions treated here cannot be addressed using the BHE, 
since it contains no dynamics. Instead, one must return to the Euler equations. As 
a rule, vortex flows tend to less stable to non-axisymmetric perturbation than to 

16-2 
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FIGURE 4. Velocities on the supercritical side of the principal columnar branch (subcritical 
conditions in the primary flow, A > poo). (a) Axial velocity, ( b )  azimuthal velocity. 
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FIGURE 5 .  Exchange of criticality between the primary flow (-O-) and the principal 
conjugate branch (-*-), using Benjamin’s Froude-number criterion. 
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axially symmetric ones. A bifurcation point is usually assoccated with a transfer of 
stability, so that in the present case, one would suppose that the specifying flow is 
stable and the principal branch is unstable on one side of the bifurcation point 
A = poo, with the reverse being the case on the other side. This is assured if the 
eigenvalues of the temporal linearized stability problem, deriving from the Euler 
equations, are simple, and provided they move with a non-zero speed across the 
imaginary axis. In  our example (33), at least when restricted to axisymmetric 
disturbances, the temporal eigenvalues are simple a t  the bifurcation points of the 
BHE equation, but bifurcation need not be associated with loss of stability, which 
implies that the temporal eigenvalues in such cases are confined to the imaginary 
axis. This may be seen from the axially symmetric Howard-Gupta equation 
(Howard & Gupta 1962), which governs the temporal stability problem. This 
equation is identical to (17a)  provided only that the axial velocity of the specifying 
flow, W(r) ,  be replaced by W(r) -c ,  where c = w / k  is the (in general, complex) phase 
speed, and u = iw is the temporal eigenvalue. I n  the example vortex (33), bifurcation 
does not lead to loss of stability. Here the Rayleigh discriminant is positive and there 
is no axial shear. Therefore, by Rayleigh’s (1916) stability criterion, (33) is linearly 
stable to axisymmetric perturbations for all A .  On the other hand, the same stability 
condition must hold for the solution branching from this point, a t  least for a limited 
range of A .  This must be so since the linearized stability characteristics there are 
determined by the unperturbed flow a t  the bifurcation point, which is the same for 
all branches meeting there. Because the velocity profiles on the bifurcating branch 
deform continuously with A ,  there will be a finite A-interval over which the 
Richardson-number criterion of Howard & Gupta, which generalizes Rayleigh’s 
criterion to admit axial shear, continues to guarantee linear stability to axially 
symmetric perturbations. The eigenvalues, u, of the temporal stability problem can 
be found from the eigenvalues, p,  of the static bifurcation problem in the primary 
flow selected for numerical treatment (for which W(r)  = l ) ,  since it is easy to show 
that 

The eigenvalues u are simple and lie on the imaginary axis for all A ,  and the zero 
eigenvalue is assumed when A = p .  

Szeri (1988) has shown that, within the confines of the Arnol’d-Casimir theory, 
these results may be extended to weakly nonlinear stability. (This theory has been 
applied to  axisymmetric swirling flow by Szeri & Holmes 1988. Its  interpretation and 
significance is a complicated matter that requires and deserves further study.) 

A simple test due to Leibovich & Stewartson (1983) exists by which one may 
determine if a columnar flow is unstable to non-axisymmetric perturbations. If this 
test is applied to the principal columnar branch displayed in figures 1 and 3, we find 
that instability to non-axisymmetric perturbations is indicated for Alpoo < 0.88 
(recall the flow is wakelike for A / p o o  < 1) .  The HowardGupta criterion is satisfied 
for A/poo > 0.6, indicating that flows in this range are stable to  axisymmetric 
perturbations. Neither test is useful where the corresponding inequality fails. To 
characterize the stability of these flows more completely requires stability 
calculations beyond the scope of the present paper. 
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a L Po0 Po1 PI0 

2 6 1.8433 1.9693 6.2743 
20 1.843 3 1.854 7 6.2743 

14 6 0.17390 0.179 86 0.61147 
20 0.1 73 90 0.174 45 0.61 147 

100 0.1 73 90 0.173 92 0.61 147 

TABLE 1 .  Eigenvalues of the linearized problem for selected values of L and a 

0.5 L 

2.4 

Po0 

Po1 

FIGURE 6. Bifurcation diagram for the periodic branches of ,uol and pO2 ; a = 2 for better separation 
of the bifurcation points. -, principal columnar branch; -0-, L = 10, wave centred at z = 
$5; -0-, L = 10, wave centred at z = 0 ;  -n-, L = 5, wave centred at z = $5; -u-, L = 5 
wave centred at z = 0. 

5. Periodic wavetrains 
5.1. Numerical results 

The specifying flow is subcritical for A > poo : for any A in this range, an infinitesimal 
standing wave is possible, with wavelength depending on A .  Fixing the wavelength 
at  L,  we continue infinitesimal standing waves to finite amplitude for the specifying 
flow (34) with a = 2 and a = 14 using the methods previously described. The larger 
value of a was used in an earlier study by Leibovich [1970), because it provided a 
good fit to Harvey’s (1962) experimental data. The eigenvalues ppm, determined 
numerically as described in Appendix A, are given in table 1 for a = 2, L = 6 and 20, 
and for a = 14, L = 6, 20 and 100. 

Figure 6 is the bifurcation diagram for the case a = 2 and L = 10. The diagram for 
01 = 14 is qualitatively similar, but the separation between the curves for the 
columnar branch and the first wavy branch closes too rapidly to be conveniently 
illustrated in a drawing. 

We next explore the waveform for three flows on the fundamental wavy branch for 
the case a = 14. The stream function at a fixed value of r = 0.25 is plotted in 
figure 7 (a )  as a function of z over one wavelength, for three values of A/poo .  As A/poo 
increases, the wave trough becomes increasingly sharp and concentrated, and the 
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FIGURE 7. Approach of the periodic solutions to localized waves. (a) Fixed length L = 6:  wave 
trough becomes localized as the wave amplitude increases. ( b )  Fixed amplitude Alp = 1.10: the 
half-height length of the wave approaches a constant value independent of the computational 
domain length. 

0 50 

wave crests increasingly broad and flat. The same trend is seen if the fundamental 
wavy branches for a sequence of flows of increasing wavelength L are sampled at 
fixed A/,uoo (figure 7 b )  . 

The changes in waveforms as either (A-poo)/,uoo or L increases are illustrated in 
figure 7 .  Increases in either of these parameters appear to produce a wave shape with 
a very sharp trough, in which there are strong axial accelerations, rapidly tending to 
a broad flat crest. Over most of its extent, this broad crest is an essentially columnar 
flow, but distorted considerably from the primary columnar flow. These features are 
characteristic of a solitary wave, with L = a, on a columnar flow different from the 
specifying flow. 

Figure 8 shows streamlines projected onto a meridian plane for increasing values 
of Alpoo for the case L = 6 and a = 14. The deceleration of the upstream flow caused 
by the wave is apparent a t  the smallest value of A/,uo0 shown. The other two 
streamline fields reveal a region of closed streamlines, with the size of the 
recirculation region growing with A/,uoo. 

Velocity profiles a t  the wave trough are given in figure 9 (a,  b)  for a two swirl levels 
large enough to cause a region of reversed axial flow to appear. Figure 9 ( c )  shows the  
difference between the axial velocity at the trough and the axial velocity a t  the crest, 
where the flow is nearly columnar and, as will be shown, virtually indistinguishable 
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from the principal conjugate flow. This is a perturbation which will be seen in figure 
11 to be caused to the principal conjugate pow by the disturbance concentrated near 
the wave trough, rather than a perturbation to the specifying flow. The profiles in 
figure 9(c )  are similar to  the perturbation axial velocity in solitary waves on the 
specifying flow. 

The observations we have made about the apparent appearance of solitary-wave 
behaviour will now be put to  quantitative tests. 

The characteristic length of a solitary wave can be measured by, say, its half- 
height length. According to the weakly nonlinear soliton solution (29) ,  the half- 
height length (or any other measure of the solitary-wave length) scales with the 
inverse square root of the wave amplitude, l / (ea) i ,  or alternatively, with l/lA -,uooJ~, 
a t  least for ) A  -pool sufficiently small. The axial velocity perturbation a t  the origin 
is proportional to the wave amplitude, €a. I n  figure 10 we have plotted the half- 
height calculated from our numerically determined solutions on the first wavy 
branch for several wavelengths L = (6,  20 and loo), against the axial velocity 
perturbation at the origin to test whether the amplitude-length scaling appropriate 
to the weakly nonlinear solitary wave is approached by a wave of the computed 
periodic wavetrain. Waves exhibiting that scaling will have a slope of -a on this 
log-log plot, and the solid line drawn has that slope. The wavetrain with period 
L = 6 ,  given by the open circles, deviates substantially from the -: slope both for 
small and large wave amplitude. The longer waves, however, accurately display the 
solitary-wave scaling for amplitudes ranging from fairly small values to quite 
substantial ones. Marked deviations from the weakly nonlinear solitary-wave scaling 
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FIGURE 9. Velocities on the periodic branch of pol a t  the wave centre z = 0. (a) Axial velocity, 
( b )  azimuthal velocity, ( c )  difference in axial velocity between the wave centre and tail. 

occur for very small axial velocity perturbations and for axial velocity perturbations 
of O( 1) and higher. As wiil be seen in the next section, strong nonlinear effects distort 
the solitary wave on the primary flow in the same way, and begin to substantially 
modify the weakly nonlinear scaling a t  about the same level of axial velocity 
perturbation. These deviations from the weakly nonlinear scaling do not signal 
departures from solitary-wave behaviour, but rather transitions to a strongly 
nonlinear solitary-wave regime. We note that for large perturbations, the L = 6 case 
falls on the same curve as the longer waves, implying that the period of this wave is 
not long enough to exhibit solitary-wave behaviour a t  small amplitude, but that it 
does develop strongly nonlinear solitary-wave behaviour a t  large amplitude. 

We conclude from these considerations that one wavelength of a periodic 
wavetrain rapidly approaches a solitary wave as the wave amplitude increases above 
a modest level. The resulting motion may be characterized either as weakly or as 
strongly nonlinear solitary waves, depending upon amplitude. Furthermore, the 
columnar flow to which these solitary waves tend, at distances from the station of 
maximum amplitude large compared to the half-length Lt, is not the specifying flow, 
but the principal conjugate flow. This point is illustrated in figure 11. Figure 11 (a )  
shows the difference between the stream function of the principal conjugate flow and 
that of the first wavy branch as a function of r for wavelength L = 6 for three values 
(0.05,0.25, and 1 .O)  of ( A  -poo)/poo, corresponding to waves of increasing amplitude. 
At the largest (A-poo)/poo (hence the largest amplitude), the difference is barely 
detectable. Figure 11 (b )  shows the same tendency as L increases with the wave 
amplitude fixed. 
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5.2. Closed streamlines and the Prandtl-Batchelor condition 
When stagnation points form, and with them recirculation regions of closed 
streamlines, we must reconsider the interpretation of the results. This is due to the 
well-known non-uniqueness of steady, axially symmetric, inviscid flows with closed 
streamlines. When closed streamsurfaces exist, the specification of the vorticity 
distribution by functional forms for H ( $ )  and Pi@) determined by the upstream flow 
need not be continued into the region of closed streamlines. In  fact, if the flow is to 
be perfectly steady and either two-dimensional or axially symmetric, and to be the 
limit of a viscous flow as the viscosity vanishes, the vorticity in the recirculation 
region must satisfy the constraints found by Prandtl (1904) and Batchelor (1956). 
For axisymmetric flow this requires F(@) =- 0 and H'(@) = constant ( = h,, say). One 
might think that it solution with closed streamlines, ignoring the Prandtl-Batchelor 
(or PB) condition, can be made consistent with it by recomputing the flow inside the 
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FIGURE 11. Convergence of the wave crests of the periodic solution to the columnar solution of the 
same amplitude. (a) Fixed length L = 6, the difference vanishes as the wave amplitude increases. 
(b )  Fixed amplitude ( A  -pol ) /po l  = 0.05, as the computational domain length increases. 

dividing streamsurface, using the PB criterion to fix the interior vorticity 
distribution, but maintaining the exterior flow and the shape of the dividing 
streamsurface. This generally cannot be done, however, while balancing the interior 
and exterior pressures. Thus, if the PB condition is invoked, flows computed with an 
arbitrary specifying flow upstream and containing closed streamlines must be 
replaced by solutions of a free streamline type of problem, in which the boundary 
shape between the external region (specified by upstream conditions) and the 
internal region (PB flow) is part of the problem (see Leibovich 1968 for an example 
of such a construction). 

The wavetrains of $5.1 do not exhibit closed streamlines for A/po1 < 2.5, and in 
this range the indeterminacy in F and H does not arise. At the upper end of this range 
of A/,uol, the waves are highly nonlinear. For larger values of A / p o l ,  the 
indeterminacy arises. A similar indeterminacy arises in those columnar flows 
discussed in $4 containing lines with zero axial velocity. Passing through this line 
implies that the stream function us. radius relationship cannot be inverted as done 
in $2. Non-uniqueness follows, and different functional forms for F and H may be 
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postulated on either side of the line where w = 0. Here there are no closed 
streamlines, except perhaps in a limiting sense, where streamlines close ‘at  infinity ’. 

One way to resolve the indeterminacy is to invoke the P B  condition (in addition, 
a matching between the interior and exterior flows is required to fix hp. )  On the other 
hand, the PB condition is not a fundamental physical principle : Batchelor (1956) 
points out circumstances in which i t  is not applicable even when the flow is precisely 
steady and axisymmetric. The P B  condition is based on the achievement of a double 
limit, t + co, v + 0, while maintaining two-dimensional or axisymmetric symmetry ; 
this is done (Batchelor 1956) by considering steady, symmetric flows with a 
decreasing but non-zero viscosity. One must, then, consider questions of the 
timescales and the robustness of symmetry before applying the PB condition to any 
specific problem. 

The PB condition is not relevant if the flow is not exactly axisymmetric, even if 
the non-axisymmetric component of the flow is weak, since there is then fluid 
exchange across the nominal closed streamsurface. Our view of vortex breakdown 
leads us to contemplate flows in which symmetry-breaking instability is active. The 
present steady, axisymmetric solutions are expected to  serve as a component in a 
composite model which includes additional contributions (effects (2) and (3) as 
presented in the Introduction.) With this view of the overall flow structure, the 
vorticity distribution inside closed streamlines need not be constrained by the PB 
condition. We have chosen to  continue smoothly the functional form of H($), F($)  
from the region outside the closed streamlines. If a small non-axisymmetric 
component is present with an axisymmetric recirculation zone, the fluid exchange 
across (at least a portion of) the nominal boundary would, in our view, create an 
interior vorticity distribution that is not inconsistent with that in the external flow. 
Thus, in an average sense, the functional form of H($), F($)  should vary smoothly 
across the boundary of the recirculation zone. A reasonable form for the circulation 
in the interior would be -a($), not F($) ,  to produce a flow with an interior swirl 
sense in agreement with that in the external flow, which is certainly required if there 
is exchange of fluid; this alteration is dynamically compatible with the flows 
computed here (as pointed out in L). Thus, it is our view that the flows calculated 
here having recirculation regions are sensible, although possibly too simplistic, 
models of real vortex flows with stagnation points and a semblance of an 
axisymmetric recirculation region (albeit a broken one). We are in the process of 
exploring the breaking of the symmetry of the flows produced in this paper, and 
intend to report on that investigation in the future. 

6. Solitary waves on the specifying flow 
When the specifying flow is slightly supercritical, a weakly nonlinear solitary wave 

(29a) is possibie. A diagram summarizing the numerical continuation of this solitary 
wave solution branch to more strongly supercritical conditions ( A  decreasing from 
poo; note that the scaled distance from the branch point, lA-pool/poo, ranges from 
zero to a maximum of unity) is given in figure 12. The diagram superposes two 
measures of the wave disturbance of the specifying columnar flow, the maximum 
perturbation axial velocity (wkax) a t  the plane of symmetry z = 0, and the 
perturbation axial velocity on the axis at this plane (w’(0,O)). The two measures 
agree for values of lA -pool/poo as large as 0.8. For larger values of this parameter, 
the point at which the perturbation axial velocity is a maximum lifts off of the 
rotation axis. 
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FIGURE 12. Bifurcation diagram, solitary wave branch. The extreme perturbation axial 
velocity is off the axis when A < 0 . 1 6 , ~ ~ ~ .  
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FIGURE 13. Axial velocity at wave centre z = 0 on the solitary-wave branch. 

The shift of the point of maximum axial velocity disturbance may also be seen in 
the axial velocity profiles at the symmetry plane. Profiles of the complete axial 
velocity component are drawn in figure 13 for four values of A .  Three of the profiles 
include negative values of w, which implies the existence of a region of closed 
streamlines containing reversed axial velocities. The discussion in Q 5.2 applies to the 
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FIGURE 14. Meridional streamlines of solitary-wave solutions, L = 10, contour intervals 0.05. (a) 
,4/yoo = 0.80, ( b )  A /poo  = 0.70, a small recirculation bubble appears, (c) Alpoo = 0.001, a large 
recirculation bubble. ( d )  Detail of the bubble in ( c ) .  

part of this branch exhibiting closed streamlines ( A  < 0 . 7 4 , ~ ~ ~ ) .  When the maximum 
perturbation lifts off the axis, a high-speed upstream-directed jet forms in the 
interior of the recirculation region, and the dividing streamline develops a dimple a t  
the axis and is no longer convex. We are unaware of observations of such a 
phenomenon, and believe it to  be physically unrealizable. 

Projections of the streamlines onto the meridian plane are shown in figure 14. 
These plots show the emergence of the recirculation region. We have found that the 
flow field is represented with reasonable accuracy by the weakly nonlinear solution 
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(29a) for waves leading to axial velocity perturbations strong enough to cause flow 
reversal. This is a significant finding, since we may then capture the essentials of our 
numerical computations of a strongly perturbed flow with the simple formula (29). 
To show the level of agreement, we have compared (for 01 = 14) w'(0,O) from our 
numerical computations with the approximation (29a). This is found in figure 15, 
together with a comparison of the dependence of wave half-length on wave 
amplitude (measured by w'(0,O)) compared to the -+ power-law dependence obeyed 
by the weakly nonlinear solitary wave. The weakly nonlinear solution (29a) 
overpredicts the wave amplitude and length, but the differences are less than 10% 
for wave amplitudes large enough to cause stagnation and reversed axial flow. 

Contours of the perturbation stream functions, as predicted by numerical 
computation and by the weakly nonlinear approximation (29a), are shown in figure 
16. We judge the agreement to be qualititatively good for all three values of 
~A-poo~/poo shown, quantitatively good for 111 -pool/poo = 0.1, and acceptable for 
some purposes for the higher values of ~A-poo~/poo. It is worth noting that a 
stagnation point first appears in the flow for ~A-,uoo~/,uoo z 0.25, so the three cases 
shown in figure 15 range from moderately to strongly nonlinear. 
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FIGURE 16. Comparison of perturbation streamlines of the computed (-) us. the weakly 
nonlinear (. . . . . .  ) solitary waves. (a)  A/poo  = 0.90, contour intervals 0.004, (b)  A / p o o  = 0.50, 
contour intervals 0.012, (c) Alpoo = 0.20, contour intervals 0.02. 

7. Discussion and conclusions 
We have shown here the relationships between fully nonlinear standing periodic 

wavetrains and solitary waves and the underlying columnar flows. From a given 
primary, or ‘specifying ’, columnar flow, other columnar flows, solitary waves, and 
periodic wavetrains may be constructed. Of the additional possible columnar flow 
branches, the one we have designated the ‘principal conjugate’ is of special interest. 
It branches from the primary flow a t  the critical swirl level, and has been shown to 
be supercritical when the primary flow is subcritical, and vice versa. 

Solitary waves exist only when the primary flow is supercritical, a condition that 
arises when the swirl rate of axial vorticity in the primary flow is less than an easily 
determined critical value. Periodic wavetrains exist only when the primary flow is 
subcritical, which arises when the swirl rate exceeds the critical value. On the other 
hand, the periodic wavetrains rapidly attain the characteristics of solitary waves as 
the swirl, and with it the wave amplitude, increase for fixed wavelength; or as the 
wavelength increases a t  fixed, but finite, amplitude. These can be interpreted as 
solitary waves propagating on the principal conjugate flow in the range where it is 
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supercritical. Thus the requirement that flow upstream of solitary waves must be 
supercritical is maintained. 

The simple, partly analytical, formula for weakly nonlinear solitary waves is 
shown to  fit the numerical data for fully nonlinear solitary waves very well for a 
substantial range of amplitudes. The errors associated with this fit are relatively 
small even for waves with amplitudes large enought to cause stagnation points and 
reversed axial flow to occur. 

The phenomenon of vortex breakdown supplies us with the main motivation for 
the present study of large-amplitude waves, but other applications exist. These 
waves can propagate on vortex cores without reaching amplitudes extreme enough 
to cause recirculation to occur, and must be presumed a possibility on a wide variety 
of concentrated vortex flows. We have outlined in the paper a hypothesis in which 
the large waves serve as one of the building blocks in a theoretical proposal for vortex 
breakdowns. We are presently exploring complementary aspects of this proposal. 

We have benefitted from comments and suggestions made by Professor T. Brooke 
Benjamin for which we are grateful, This work was supported by the US Air Force 
Office of Scientific Research under grants AFOSR-87-0255 and AFOSR-89-0346, 
monitored by Dr L. Sakell. Additional support was provided by the grant AFOSR- 
89-0226, monitored by Dr J. McMichael, and by the US Army Research Office a t  the 
Mathematical Sciences Institute of Cornell University. 

Appendix A. Numerical implementation 

A finite-difference discretization is done on equation (16), written in the form 
A. 1,  Discretization 

a i a @  a w  
ar 0 r ar az2 

D2@+SZ(@,r;A) = r- -- +-+SZ(@,r;A)  = 0. 

The finite-difference approximation corresponding to this form of the radial 
derivatives has the property that the contribution of each cell boundary to the 
circulation around the cell is the same for the two cells adjacent a t  that boundary; 
the result is that any group of cells satisfy the Stokes theorem when individual cells 
do, similar to the flux consistency in ‘conservative’ discretization of the 
Navier-Stokes or the energy equation. 

We expect solutions that have sharp axial gradients, and non-uniform grid spacing 
may be necessary in the z-direction. This is done by defining a computational 
coordinate c, related to the physical coordinate z by z =f([) (f’(5) 4 0);  the z- 
derivative in (A 1) becomes 

Equation (A 1 )  is discretized by central differences on a rectangular grid having 
uniform spacing in ( r , [ ) ,  corresponding to variable spacing in z .  The finite- 
dimensional version of (A 1) is 

D@+n(@, A )  = 0, (A 2) 



492 S.  Leibovich and A .  Kribus 

where 

Ar-2 (1 -g)', 
-2Ar-'( 1 -($)2)-', j = q and i = p ,  

j = q and i = p -  1 ,  

( V p q i j  = 

j = q and i = p +  1,  

\ 0, otherwise ; 

AC-"f'(Cq)f'(Cq - AC/2)r1> i = p a n d j = q - 1 ,  

-AC-"f(Cq)-'[f'(~~++~/2)-'+f'(~,-A~/2)-'] ,  i = p a n d j  = q, 

AS"[f'(Cq)f'(Cq + AC/2)1-'> i = p and j = q +  1,  

0, otherwise. 

D', D" are 'directional operators ', containing entries relevant to the derivatives in 
r ,  <-directions. Each contains three non-zero diagonals in block structure as shown in 
figure 17. The separation of D into its directional components and the structure of 
these components will be used in §A 2 below to form efficient and consistent concepts 
of separation of variations and inner product for the discrete problem (A 2). 

The contribution of boundary points with Dirichlet-type boundary conditions is 
placed in 51 when non-zero ; for Neumann-type boundary conditions, an external 
node is defined outside the boundary, its value given by the first derivative at  the 
boundary ; for d@/dn = 0, we set QBfl = in the equation for the boundary node 
Q B .  The singularity of (A 1)  a t  r = 0 is not explicitly present in the numerical 
problem, since CP = 0 a t  r = 0, and the discretization of (A 1) takes place only in the 
interior of the domain - a finite distance from r = 0 (more on this singularity in 
§A 4). 
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A.2. Algebraic treatment of the bifurcation and continuation 
In the neighbourhood of any bifurcation point A = p ,  we expand the solution to (A 2) 
in a small parameter e, as in (18) : 

@ = ~ # ~ + e ~ # ~ +  ..., A = , U + + K , + E ~ K ~ + . . .  . (A 3) 

Substituting into (A2)  and collecting terms of like power in e, we obtain the 
sequence of equations, analogous to (20), the first three of which are 

L#o zz [D + pP(l) + Q‘”] #o = [D + S‘”] #o = 0, 

L4, = - KO P(l)#o - S(’)#O 40’ 
(A 4 4  

( A  4 b )  

w8 = - K l P ( ’ ~ # o - K o ~ 1 ~ # ~ - ~ ~ ~ 2 ~ ~ ~ ~ $ 1 - ~ ~ 3 ~ # 0 # o # ~ - K ~  P(2)#o#o, ( A  4C) 

where the derivatives of 0 are defined following (19) : 

SW) ppk)  + QW). 

The eigenvalue problem (A 4a) can be solved by separation of variables: let #, 
have the form, equivalent to (21) 

( 4 o ) i j  = (#a (&)p  

where 4: and 4: may be called ‘directional’ components of #o. Substituting into 
(A 4a)  and using the repeated block structure of D we obtain 

{[(D‘)piri +,~(P(~))pi i i  + (Q(l))piiil (K)J = - (4:)p {(Dz)iglj 

which is an equality of two rank-1 matrices; there exists therefore a scalar /3 such 
that 

-P(#Zo)*+ ( W 1 * 1 ,  (4Zo)j = 0 

(F1))iipi [PIpi i i  +PIpiii + (Q(’))pitiI ( 4 ) i  + / 4 & ) k  = 0. 

(A 5 a )  

(A 5b) and 

Note that Pi) is invertible since it is a diagonal matrix having p(ri) entries on its 
diagonal, which are positive. 

The eigenvalues Pn,pn, and their eigenvectors are found from ( A 5 )  by the 
tridiagonal set of subroutines from EISPACK (Smith et al. 1976). 

Define an inner product as follows: 

< X , Y )  = XTSY, ( A  6) 

where ( s ) p * f j  = W ) p t  (S2)*j 

and S, SZ are diagonal : S = diag b(ri)/ri], s“ = diag [ f ’(&)I (the first and last 
elements may be different owing to the boundary conditions); both are positive 
definite. Under this inner product, (P(l))-lL is self-adjoint and the eigenvectors of 
(A 4a) are orthogonal. 
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to obtain the self-adjoint form of the operator, and we Multiply (A 4b)  by 
can impose a solvability condition : 

((p(’))-’ [s‘2’#o 9, + KO p(1)40], #o ) = 0. (A 7)  

This is used to find K ~ ,  as in (23). To solve (A4b) for 41, we use an eigenvector 
expansion method. Similarly, K~ and 9, can be found from ( A ~ c ) ,  and so to any 
desired order. We used two or three terms of (A3) ,  depending on the type of 
bifurcation encountered. 

Let d 3 a @ / a A ,  and take the derivative of (A 2) with respect to A : 

Ld = -P(@). (A 8) 

This is a system of ODE’S for @ ( A ) ,  equivalent to (29b); given initial conditions 
@(A,,) from (A 3) or the weakly nonlinear estimate (30), this linear system can be 
solved for h. We use SPARSPAK (George et al. 1980) to solve (A 8) and a Runge-Kutta 
integrator (Press et al. 1986) to integrate over A .  

Given 9, and A ,  an approximate solution of (A 2), we may define a Newton’s 
method iteration (Dennis & Schnabel 1983) : 

Under some mild assumptions, in particular that  @, be close enough to the exact 
solution and that the Jacobian be non-singular and Lipschitz continuous, this 
iteration will converge to the exact solution a t  a quadratic rate (Dennis & Schnabel, 
theorem 5.2.1.). If we make the initial estimate ( A 3 )  and the integration (AS) 
acurate enough and stay away from bifurcation points (where the Jacobian is 
singular), then convergence of this step is practically guaranteed. 

We use SPARSPAK to solve each step of ( A 9 ) ,  and a line search algorithm to 
improve global convergence properties. The structure of the Jacobian in (A 9) is the 
same as that of L in (A8) ,  so the most time-consuming part of the SPARSPAK 

algorithm - the structure decomposition - needs to be done only once. 

A.3. Numerical errors and convergence 

Two types of numerical errors need to be considered: the discretization error (the 
difference between the exact analytic solution and the exact solution of the 
discretized system), and the convergence error (the difference between the numbers 
actually obtained and the exact solution of the discretized problem). Convergence 
errors are important in the corrector step only, since those occurring in the predictor 
steps - initial estimate and integration - are irrelevant when the corrector step 
converges. 

The initial estimate need not be very accurate, as explained above. However, if it 
is too inaccurate, then the corrector procedure may converge to a different branch 
or not converge to a solution a t  all. The initial estimate will be improved as E + O  in 
(A 3), but the integration and corrector steps will lose accuracy as the Jacobian 
becomes singular near the bifurcation point. We found that with E = 0.01, taking up 
to 3 terms of the series (A 3) leads to  convergence of (A 9) and reasonable accuracy 
for the subsequent integration. 
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The convergence errors are determined by the stopping criterion of the corrector 
step (A 9 ) :  

lID@+l2(@,A)IIi < S2. 

The change in 1 1 @ 1 1  in the last Newton step is usually considered to be of the same 
order as the convergence error. For S = lop8, the typical value was: 11A@11 z As 
shown below, this is much smaller than the estimate for the discretization error, and 
we may therefore treat the computed solutions as ‘exact ’ solutions of the discretized 
problem. 

Equation (A 2) was derived using central differences, and is second-order correct 
in Ar, A[. The grid transformations z+ y used have a finite derivative everywhere, 
and therefore do not affect the order of the truncation error (Kalnay de Rivas 1972) ; 
therefore it is considered second order also in Az. Higher-order accuracy, as well as 
an estimate €or the discretization error, may be obtained by Richardson’s 
extrapolation. Computation was repeated for sample cases with grids having 
resolutions of (Nr ,Nz ) ,  where N, and N, E (10,20,40) : 9 different grids, followed by a 
two-dimensional extrapolation to l/N+ 0. Typical values of the relative difference of 
the second-order solution from the extrapolated results are presented in figure 18; 
these differences serve as an estimate for the discretization error. 

To further validate the above estimate of the discretization error, we applied the 
numerical algorithm to a problem having a known solution. The nonlinear function 
D in equation (16) is chosen to be : 

@2 

rJ,(ar) ’ 
Q(@,r;A) = A @ + -  

where J1 is a Bessel function of order 1 and m is its first zero (a = 3.8317 . . .). Equation 
(16) with this D has an analytic solution which is qualitatively similar to the 
computed (and weakly nonlinear) solitary waves : 

@(r ,  z )  = % ( a 2 - A )  rJl(ar) sech2 [+z(a2-A)i] .  

This solution bifurcates from the trivial @ = 0 branch a t  A = a2 and increases in 
magnitude as A + 0. (This problem does not necessarily correspond to a physical 
primary flow.) The discretization errors for @,poo,pol and the first two axial 
wavenumbers are presented in figure 19. 

The error in the perturbation stream function with the 20 x 20 grid is close to 2 % 
for the test function and less than 1 %  for the Richardson-extrapolated case. For 
velocities (computed from the stream function by central differences), the 
discretization error is larger, but still not exceeding a few percent on a 20 x 20 grid. 
The results in figure 18(b)  are for the axial velocity w = a$/rar,  which is strongly 
dependent on r-resolution. The errors in the values of the axial wavenumbers & and 
the bifurcation points ,unm are similarly of order 1 YO for the same level of resolution. 
The 20 x 20 grid was therefore the standard in most of our computations. 

A.4. The singularity at r = 0 

Equation (16) has a singularity on the axis r = 0, and construction of a numerical 
scheme as well as interpretation of the results should take that singularity into 
account. The discretization (A 2) makes explicit use of the boundary condition (16c) 
a t  r = 0, and applies (A 1) only to interior grid points; the singularity is thus avoided. 
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FIQURE 18. Variation with mesh size of errors relative to Richardson-extrapolated values at  
A/po0 = 0.80: 0 ,  actual computation with this mesh; 0, extrapolated. (a) Error in @(0.3,0), 
( b )  error in w(O,O), (c) error in poo. 
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FIGURE 19. Variation with mesh size of errors relative to the exact solution of the test problem : 
0 ,  actual computation with this mesh; 0, extrapolated. (a) Maximum error in @ ( T , z )  at A / a z  = 
0.80, (b) error in axial wavenumbers, (c) error in poo, (d)  error in pol.  
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However, if the grid is refined until l / r  becomes very large a t  the first grid point off 
the axis, then the matrices involved will become unbalanced and numerical accuracy 
will deteriorate. In our case such fine grids are not necessary since Richardson's 
extrapolation seems to show convergence before very large numbers occur. 

The singularity is encountered again when we compute the axial velocity at  the 
axis, which is used as a measure of the perturbation size. The definition w = r- l  a$/& 
cannot be applied directly at r = 0 ; two numerical schemes are used, and the values 
obtained for w(0,O) agree to within a few percent. 

The first method is a quadratic extrapolation of w-values from interior grid points, 
coupled with the condition awl& = 0 at r = 0. The quadratic function satisfying this 
condition and passing through the first two interior grid points is 

leading to 
4w(Ar) - w(2Ar) 

3 
G(0) = 

The second method applied Stokes' theorem to a rectangular loop of dimensions 
(ST,&)  touching the axis r = 0 and centred about the line of symmetry z = 0. To 
reduce the error associated with numerical integration over a finite rectangle, we let 
Sz +'O and obtain a balance involving r-integration only. The vorticity integral can 
be expanded in powers of Sz, 9 being the azimuthal component of the vorticity: 

A similar expansion is done for the recirculation integrals : 

$usdl = E,z [w(O,z)-w(Sr,  z)]dz+ [u(r,@z)-u(r, -$Sz)]dr 

1: :$ ( r ,  0) dr + O(Sz2). w(0,O) -w(Sr, 0) - -- 1 
Comparing the leading terms in Sz, we obtain 

The integral was computed using the Simpson +-rule, and the two expressions for 
w(0,O) were compared for Sr = Ar and 2Ar. The differences were of order 1 % in most 
cases, and increased up to 5 Yo only as A +,u (where the perturbation is small and 
roundoff error becomes significant) and as A -+ 0 (where large radial gradients require 
increased resolution). We therefore used the simpler quadratic extrapolation form 
throughout. This comparison also serves as an additional check on the convergence 
of the numerical results near the singular line r = 0. 

Appendix B. Singular limit of zero swirl 
For the specifying flow (34) that we have been using as example, the zero-swirl 

limit A = 0 is irrotational, and the constant-speed flow $ = 3' is unique. Therefore 
no differentiable solutions exist except for the specifying flow. On the other hand, our 
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numerical results suggest that  the limit A + 0 + along the principal columnar branch 
develops a strong shear layer tending in the limit to a vortex sheet separating two 
piecewise irrotational limiting flows, in each section of which the flow is oppositely 
directed and of uniform infinite speed! W7e explore this bizarre situation by an 
asymptotic development that seems to fit with the numerical findings, and which 
gives the asymptotic dependence of the velocity levels, and of the shear layer 
location and thickness on A .  

It is convenient here to work with the total stream function $, governed by ( l l ) ,  
rather than the perturbation from the specifying flow. For the specifying flow (34), 
the limit of equation (1 1)  when A = 0 is D2$ = 0, with a solution that is linear in r2. 
We assume the existence of a discontinuity in this limit, located a t  r = r * ,  a t  which 
the stream function reaches its minimum value, $(r*)  = -$* (A) .  The analysis of this 
section is simplified by the change of variable 

7 = t r 2 .  

Then we may write (using the condition that $ = 0 a t  7 = 0 and $ = i a t  9 = $, and 
defining v* = ir2,) 

For A very small but not zero, we assume the existence of a single internal layer, 
centred on 7* and with a thickness &(A) that tends to zero as A --f 0 + , that joins these 
two constant-speed solutions. Furthermore, the numerical results suggest that 
$,(A) + 00 as A + 0 ,  and we also assume this. 

The solution to the outer problem has been described above, and now we seek a 
structure to the internal boundary layer separating the two irrotational regions. It 
is important (and easy to show) that D2$ = 0 to all algebraic orders in the small 
parameter in the outer regions, so that the full outer expansions retain the form 
(B l ) ,  with the coefficients of 7 being functions of A .  The point 7* and the constants 
C and D occurring in the outer problem are not yet known and must be determined 
by matching with this internal boundary layer. The argument is reminiscent of 
activation energy asymptotics (see Buckmaster & Ludford 1982). Stretch the radial 
scale near 7 = T,I*, by taking 

7 = 7*+6X = ?*(I  + p X ) ,  p = a h * ,  (B 2 )  

where 6 is the lengthscale appropriate in the layer and i t  is assumed that &(A)  --f 0 as 
A+O.  Near y* the stream function is continuous and the appropriate scale for it is 
-$*(A) ,  so we write 

$(7* + w = - $*(A)  [ I +  4 4 )  Y(x; A11 (B 3) 

in the layer, where the asymptotically small parameter & ( A ) ,  like the parameters 6 ( A )  
and $*(A),  remain to  be identified. From the definition of -$*(A) as the extreme 
value of $, we must have 

y(0; A )  = y ' (0;  A )  = 0, (B 4) 

where ( )' = dy/dX, and we also have y < 0 for all X .  We substitute the ansatz 
(B 1)-(B 3) into ( 1 1 )  and invoke (34). This yields 



500 8. Leibovich and A .  Kribus 

where 

The distinguished limit arises for 2a$, E and 2ahY e4"@*/2q* both O( l),  and we 
therefore set 

2a1,h* E = 4a2AS2 e4a+*/2q,,, = 1,  (B 5) 
which leads to the equation 

with exponentially small error. We may now look for a solution to this inner problem 
in the form of power series in the small parameter. It is more convenient in the 
analysis to regard E as the controlling small parameter rather than A ,  and so we take 

y = yo+Eyl+ ..., 

p =pl"+p2"+  ..., 

1/2q* = yo+ Y1€+ ..., (B 9) 
and the slightly unconventional form of the last expansion makes the matching with 
the outer solution simpler. 

The equations for first two coefficients, yo and yl, of (B 7) are 

ys + e2Yo = 0, (B 10) 

(B11) 

The solution to (B 10) satisfying (B 4) is 

yo(X) = In sech (X), 

and the solution to  (B 11)  is 

1 a 

Yo 

(B 12a) 

(B 12b) 

We now match the stream function in the inner region with the two outer regions. 
Matching to second order in 6 yields 

(B 13a) -- I - (2+e(1+a))+y2s2;  
27* 

E (  1 -In 2) + e2b,) (1+eln2+g2) ,  D = --(-1+ Q=-- 1 1 

2 a v *  2as?l* 
(B 13b, c) 

p = e+e2(++1a-1n2), S = q*p, (B 13d, e )  

and from these we can find 

A = 2q,(2aSe2a/E))-2. (B 13.f 1 
The numbers y, in (B 13a) and b, in (B 13c) are undetermined at this order, and 

therefore our solution is completely determined only to one order less than we have 
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A 

FIGURE 20. Comparison of computed (0)  and asymptotic (-) solutions in the limit A -+ 0 on the 
principal branch. (a) Location of the boundary layer, ( b )  maximum of the stream function $*, 
(c) layer thickness 6. 

shown - on the other hand, it is necessary to match at the level shown to accurately 
determine the solution to that order (i.e. to within an error of O(e) ) .  

The composite expansion for $ constructed from (B 1)-(B 3), (B 12), (B 13) is 

where H ( t )  is the unit function, H ( t )  = 1 for t > 0, H ( 0 )  = g, and H ( t )  = 0 for t < 0. 
Equations (B 13) give 6, r4 ,  and A as a function of the parameter e,  and from them 
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1 -' Computed 
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r 

FIGURE 21. Comparison of computed and asymptotic velocity profiles for the principal 
branch, at A = O.OO1po,. 

the dependence of 6 and r* on A can be evaluated to  yield the desired asymptotic 
relationship between these parameters as A+O. As seen in figure 20, the differences 
between the computed and the asymptotic values are only a few percent for A = 
0.01. The asymptotic solution (B 14) is compared in figure 21 to  the computed stream 
function and axial velocity for A = 1.769 x lop4. The agreement is quite good, 
considering the fact that $* = 0.13, not yet large as the analysis assumes, meaning 
that the asymptotic relation is good far beyond its expected region of 1$*1 + 1.  

The azimuthal velocity component, o, is exponentially small except in the shear 
layer. The shear layer is a concentrated region of vorticity, with both axial vorticity 
arising from the swirl as well as azimuthal vorticity arising from the variation in 
axial velocity across the layer present. As A + 0, the swirl component u --f 0 in the 
layer as Ai/llnAl, which is very much slower than A .  
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